A Short and Stereoselective Synthesis of the (-)-(5R, 6S)-6-Acetoxy-hexadecane-5-olide

Bin SUN^{1}, Li Zeng PENG^{2}, Xue Song CHEN ${ }^{1}$, Yu Lin LI^{1}, Ying $\mathrm{LI}^{1 *}$
${ }^{1}$ State Key Laboratory of Applied Organic Chemistry, Institute of Organic Chemistry, Lanzhou University, Lanzhou 730000
${ }^{2}$ Lunan Pharmaceutical Co. Ltd., Linyi 276003

Abstract

R, 6S)-6-Acetoxyhexadecan-5-olide 1, a natural mosquito attractant pheromone, was synthesized from readily available aldehyde $\mathbf{2}$ and cyclopentanone $\mathbf{3}$ using L-proline-catalyzed asymmetric aldol reaction as the key step.

Keywords: 6-Acetoxyhexadecan-5-olide, Baeyer-Villiger oxidation, aldol reaction, L-proline.
$(-)-(5 R, 6 S)-6$-Acetoxyhexadecan-5-olide 1, a natural mosquito attractant pheromone, was first isolated by Laurence and Pickett in 1982 from the apical droplet of the mosquito eggs ${ }^{1}$. Owing to its remarkable physiological activities, much effort has been expanded on the development of the method for its synthesis ${ }^{2}$. More attention has been paid on the topic of L-proline-catalyzed asymmetric aldol reaction ${ }^{3}$, we report herein a short and efficient approach to the synthesis of $\mathbf{1}$ using L-proline as the catalyst.

The synthesis commenced from the known aldehyde $\mathbf{2}$ and cyclopentanone $\mathbf{3}$ catalyzed by L-proline (Scheme 1). The syn aldol $\mathbf{4 a}$ along with its anti isomer $\mathbf{4 b}$ were isolated by flash column chromatography on SiO_{2}, obtained in 80% yield in a ratio of $85: 15$. The e.e. of $\mathbf{4 a}$ was shown to be 96%, estimated by chiral shift reagent. Protection of the resulting hydroxyl group of the aldol $\mathbf{4 a}$ with $\mathrm{Ac}_{2} \mathrm{O}$ at r.t. by a standard method gives the ester 5 in virtually quantitative yield. Baeyer-Villiger oxidation of the ketone $\mathbf{5}$ by m-CPBA in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. gave the title compound $\mathbf{1}$ in 85% yield. Baeyer-Villiger oxidation of the aldol $\mathbf{4 a}$ under the same conditions gave the desired compound $\mathbf{6}$ in 82% yield. Synthetic $\mathbf{1}$ from $\mathbf{5}$ or $\mathbf{6}$ showed identical spectral data with those of natural product $\mathbf{1}$ reported, and the optical property of synthetic $\mathbf{1}\left\{[\alpha]_{D}^{20}-36.9\right.$ (c $\left.\left.1.05, \mathrm{CHCl}_{3}\right)\right\}$ is comparable with that of natural $1\left\{[\alpha]_{D}^{20}-38.5^{2}\right\}^{1}$.

In summary, we have achieved a versatile procedure for the synthesis of enantiomerical pure (-)-(5R, 6S)-6-acetoxyhexadecan-5-olide 1, in 65% overall yield starting from aldehyde $\mathbf{2}$ in three steps, using L-proline as catalyst. The synthetic route reported here makes available the chirailty lactones that may be of interest for structure-activity studies of this type of compounds.

[^0]
Scheme 1

Reagents and conditions: a. L-Proline ($20 \mathrm{~mol} \%$), $\mathrm{CHCl}_{3}, 24 \mathrm{~h}, 80 \%$; b. $\mathrm{Ac}_{2} \mathrm{O}$, Py, DMAP, r.t., 100%; c. m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaHCO}_{3}$, r.t., $82 \sim 85 \%$.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20272020 and 20072012).

References and Notes

1. B. R. Laurence, J. A. Pickett, J. Chem. Soc., Chem. Commun., 1982, 59
2. (a) G. Q. Lin, H. J. Xu, B. C. Wu, et al., Tetrahedron Lett., 1985, 26, 1233; (b) W. L.Wu, Y. L. Wu, J. Chem. Research (S), 1990, 112; (c) G. Q. Lin, Y. Y. Jiang, G. Z. Guo, K. M. Xia, Acta Chim. Sin., 1987, 45, 602; (d) S. Ramaswamy, A. C. Oehlschlager, Tetrahedron, 1991, 47, 1145; (e) C. Gravier-Pelletier, M. Saniere, I. Charvet, et al., Tetrahedron Lett., 1994, 35, 115; () C. Bonini, M. Checconi, G. Righi, L. Rossi, Tetrahedron, 1995, 51, 4111.
3. (a) P. Pojarliev, C. Castello, Org. Lett., 2001, 3, 573; (b) B. List, Tetrahedron, 2002, 58, 5573; (c) L. Z. Peng, H. W. Liu, T. Zhang, et al., Tetrahedron Lett., 2003, 44, 5107.
4. Selected spectral data:

4a, $[\alpha]{ }_{D}^{20}-33.5\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (film): 3448, 2956, 2925, 2854, 1734, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\text {ppm }}\right): 0.86(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Me}), 1.23$ (brs, 2 H$), 1.34-2.38$ (m, 22 H), $3.65-3.69\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, \mathrm{CHOH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{ppm}}\right): 14.1$, 20.5, 22.6, 24.7, 26.7, 29.3-29.6 (5 C), 31.9, 35.1, 38.4, 53.8, 72.1, 224.2; EIMS m/z: 254 $\left(\mathrm{M}^{+}, 1.6\right), 236\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 35\right), 152\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}, 35\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2}+\mathrm{Na}$ $\left(\mathrm{M}^{+}+\mathrm{Na} \text {) 277.2138, found 277.2141. 1, [} \alpha\right]_{D}^{20}-36.9\left(c 1.05, \mathrm{CHCl}_{3}\right)$; IR (film): $1745 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{ppm}}$): $0.88(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{Me}), 1.10-1.1 .98(\mathrm{~m}, 22 \mathrm{H}), 2.08$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.36-2.64(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOAc}), 4.94-4.99(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C} H \mathrm{OCO}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{ppm}}$): 171.0 170.7, 79.8, 73.8, 31.8, 29.9, 29.5-29.2 (6 C), 25.3, 24.0, 22.6, 20.9, 18.3, 14.0; EIMS m/z: 312 ($\mathrm{M}^{+}, 1.6$), 269 ($\mathrm{M}^{+}-\mathrm{Ac}, 13$), 252 $\left(\mathrm{M}^{+}-\mathrm{AcOH}, 32\right), 99\left(\mathrm{M}^{+}-\mathrm{AcOCHC}{ }_{10} \mathrm{H}_{21}, 100\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4}+\mathrm{Na}$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right) 335.2193$, found 335.2192.

Received 17 September, 2003

[^0]: *E-mail: liying@lzu.edu.cn; liyl@lzu.edu.cn.

